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Abstract
The many subcomponents of the human cortex are known to follow an anatomical pattern

and functional relationship that appears to be highly conserved between individuals. This

suggests that this pattern and the relationship among cortical regions are important for corti-

cal function and likely shaped by genetic factors, although the degree to which genetic fac-

tors contribute to this pattern is unknown. We assessed the genetic relationships among 12

cortical surface areas using brain images and genotype information on 2,364 unrelated indi-

viduals, brain images on 466 twin pairs, and transcriptome data on 6 postmortem brains in

order to determine whether a consistent and biologically meaningful pattern could be identi-

fied from these very different data sets. We find that the patterns revealed by each data set

are highly consistent (p<10−3), and are biologically meaningful on several fronts. For exam-

ple, close genetic relationships are seen in cortical regions within the same lobes and, the

frontal lobe, a region showing great evolutionary expansion and functional complexity, has

the most distant genetic relationship with other lobes. The frontal lobe also exhibits the most
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distinct expression pattern relative to the other regions, implicating a number of genes with

known functions mediating immune and related processes. Our analyses reflect one of the

first attempts to provide an assessment of the biological consistency of a genetic phenome-

non involving the brain that leverages very different types of data, and therefore is not just

statistical replication which purposefully use very similar data sets.

Author Summary

Although functional and anatomical connections among cortical regions have been inten-
sively explored, genetically-mediated relationships between cortical regions have not been
pursued to the same degree. Identifying genetic factors that mediate these relationships
among different brain subcomponents can provide insight into how the human brain is
organized and functions. We have assessed the genetic relationships among cortical
regions using an integrated approach that considers twin data, genotype information
among a large set of unrelated individuals, and gene expression measurements from post-
mortem neural tissues. We looked for evidence that subsets of cortical brain regions are
under common or unique genetic control. We found that the patterns of genetic relation-
ships are highly consistent across three independent data sets and multiple lines of evi-
dence, suggesting that the patterning of cortical surface area is strongly mediated by
genetic factors and, furthermore, likely reflects underlying anatomical and possibly func-
tional relationships among cortical brain regions.

Introduction
The human cerebral cortex is known to be composed of functionally and anatomically special-
ized regions based on lesion, neurophysiological and neuroimaging studies [1]. Despite consid-
erable individual variability in the size of cortical regions and sulcal folding patterns, the
overall anatomical positioning of and functional relationship between regions are remarkably
consistent across individuals, suggesting that a conserved genetically-mediated program to reg-
ulate fundamental aspects of cortical development might exist. Unfortunately, little is known
about the degree to which genetic factors may contribute to this pattern. Genome-wide associa-
tion studies (GWAS) have only found a small number of genetic variants with effect on human
brain structures [2–8], which could be a function of size and power of those studies, but does
suggest that, if a program exists, it might be attributable to the subtle influence of many genes,
consistent with a polygenic basis, particularly given that certain cortical structures are highly
heritable [9].

We assessed the consistency of cortical patterns likely attributable to polygenic factors in
humans by comparing genetic correlations between every pair of 12 pre-defined cortical
regions among 2,364 unrelated individuals, 466 twin pairs, and postmortem brain samples
from 6 individuals. Each of these data sets has unique features and requires a different set of
statistical modeling and data analysis techniques. As such, if the results of each reveal a consis-
tent genetically mediated pattern among the 12 human cortical regions, it would suggest that
the pattern exists. Note that most replication studies of a particular phenomenon, especially in
the context of genetic association studies and GWAS, focus on replicating the actual study
designs in detail and not on the biological consistency of the findings in different contexts.
Thus, a complementary way of validating a particular phenomenon is to assess it using
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different approaches altogether, looking for independent evidence of the phenomenon of inter-
est across all of them. A recent paper by Richiardi et al. does attempt to look for consistency of
results from fMRI studies and post-mortem brain gene expression studies and is thus similar in
orientation to our approach [10]. However, our studies were designed to assess genetic correla-
tions of surface area between different brain regions that could ultimately reveal connections
between those brain regions, although we did not explore ‘connectivity’ in the specialized sense
discussed in the fMRI literature.

In the context of polygenic studies of patterns in human cortical brain regions, there are a
number of approaches one could take, as well as important issues to consider. For example,
bivariate variance components or mixed models provide an estimate of the proportion of varia-
tion in each of two phenotypes that is attributable to shared genetic factors [11]. Such analyses
can be pursued via pedigree and twin studies [12–14]. Alternatively, one can leverage actual
genotype information on unrelated individuals by contrasting genotypic similarity estimated
over the genotyped loci with phenotypic similarity. The result would be an estimate of the
genetic correlation, rg, which is simply the genetic covariance divided by the product of genetic
standard deviations of each region [11, 15]. In more practical terms, the genetic correlation can
be thought of as the degree to which the genetic determinants of two (or more) phenotypes
overlap. Previously, we studied genetic correlations of cortical brain regions based on twin
model [16]. In our present study, we extended the investigations to utilizing genomic data and
transcriptomic data from unrelated individuals. We used standard variance component models
to analyze both our sample of 466 twins (Vietnam Era Twin Study of Aging (VETSA) cohort)
and a combined sample of 2,364 unrelated individuals with genome-wide genotype data from
five different cohort studies (which we refer to as the “combined 5 cohort” or “C5C” sample)
data. We complement these twin and genotype-based analyses with studies of the correlations
among the expression levels of genes across the cortical regions in 6 postmortem brain samples
[17, 18].

To pursue these analyses, we first parceled the cortex into 12 pre-defined regions. We previ-
ously used a data-driven clustering technique to identify 12 maximally genetically correlated
subdivisions of the human cortical surface area based on the twins of VETSA cohort [16].
Although the boundaries of these regions are biologically meaningful, as they largely corre-
sponding to functional specialization of the human brain, it is an open question as to the extent
to which this pattern for subdividing the cortex is found in other relevant datasets.

Thus, to summarize our overall strategy we can break it into distinct steps. First, we sought
to replicate and validate our genetically based cortical parcellation scheme in samples indepen-
dent of those used in an original study where this parcellation scheme was identified. Second,
we evaluated the genetic correlations between the cortical subdivisions based on their surface
areas from genotype data on unrelated individuals and from analyses on a large sample of
twins. Third, we further investigated genetic correlation profiles by leveraging transcriptomes
associated with the cortical regions from 6 unrelated individuals [17, 18]. We compared the
results of each of these analyses by quantifying their agreement on the patterns of correlations
that emerged. This was done formally by assessing the degree of concordance between entries
in the pairwise cortical region correlation matrices derived from the twin, genotype and gene
expression data using the Mantel test [19]. Our overall hypothesis was that a truly conserved,
genetically-mediated pattern between cortical regions, if exists, will be revealed across indepen-
dent samples. We also analyzed brain transcriptome data to further explore the characteristics
of the genetically-mediated pattern by finding common and unique genes expressed between
any pair of cortical subcomponents.
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Results

Applying the genetically based cortical parcellations to independent data
We compared the phenotypic correlations between the VETSA twin cohort [20] and our C5C
sample across 12 cortical regions. A 12x12 correlation matrix was constructed for the VETSA
cohort and for the C5C sample (Supplemental S1 Table). Fig 1A depicts the two phenotypic
correlation matrices as heatmaps.

We estimated the effective number of independent phenotypes from the 12 cortical regions
using the eigenvalue variance metric computed from the phenotype correlation matrix. It has
been shown that the total amount of correlation among a set of variables can be measured by
the variance of the eigenvalues derived from the correlation matrix [21, 22], which in turn can
be used to derive the effective number of independent variables (see SI method for further
details). The C5C and the VETSA cohort resulted in 11.4 and 11.3 effective independent clus-
ters, respectively. The ceiling of these numbers was 12, the number of previously genetically
defined clusters, confirming the validity of the phenotypes as independent cortical factors that
could lead to insight about the organization of the human brain, and its ability to stand up to
independent analyses.

The phenotypic correlation matrices derived from the VETSA and C5C data had entries that
were highly correlated (Fig 1A, see S1 Table for actual correlation values), with the Mantel test
correlation coefficient taking on a value of 0.873 (p-value = 0.0001, 95% confidence interval =
[0.842, 0.907]). The most highly correlated pairs of regions (correlation coefficient r> 0.25 in at
least one data set) involved neighboring regions within the conventional lobar divisions. This pat-
tern was consistent between the two data sets. The most anti-correlated pairs of regions, again
consistent between the two data sets, were mostly between regions on the frontal lobe and regions
on the other three lobes.

Fig 1. Applying the genetically based cortical parcellations to independent data. A) The phenotypic correlation matrix
of VETSA twin cohort versus the phenotypic correlation matrix of combined-5-cohort (C5C). The Mantel test confirmed that
the similarity between them was highly significant (p = 0.0001). B) Cortical brain phenotypes—surface area measures of 12
cortical regions after controlling for total surface area. The cortex was parceled into 12 genetically based regions of
maximal shared genetic influence derived from the VETSA sample [16]. 1. motor & premotor; 2. dorsolateral prefrontal; 3.
dorsomedial frontal; 4. orbitofrontal; 5. pars opercularis & subcentral; 6. superior temporal; 7. posterolateral temporal; 8.
anteromedial temporal; 9. inferior parietal; 10. superior parietal; 11. precuneus; 12. occipital. C) The phenotypic correlation
versus the genetic correlations (rg) matrices of VETSA. The correlation of the two matrices was also highly significant
(p < 0.0001), suggesting high genetic contributions to the cortical patterning. Correlation coefficients are listed in
Supplemental S1 Table and S2 Table.

doi:10.1371/journal.pgen.1006143.g001
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Genetic correlations derived from genotype and twin analyses
As noted, the inter-cortical surface area phenotypic correlations were very similar between the
VETSA and C5C sample data sets, even though the data had been collected independently. To
understand what might be underlying the stability of the phenotypic correlation profile
between these data sets, we investigated the underlying genetic correlations within each data
set, and the similarity of the genetic correlations resulting from both data sets.

We applied a classical twin-based variance component model to the VETSA twin samples
to derive the pairwise genetic correlations of surface area between the 12 cortical regions (S2
Table and Figs 1C and 2B). Next, we used a bivariate variance component model, as imple-
mented in GCTA-bivariate analysis [23], to obtain estimates of the genetic correlations of the
same set of phenotypes in the C5C sample data (S3 Table and Fig 2B). The elements of the cells
forming the major off-diagonal triangle in Fig 2C were scaled to [-1,+1] so they would be
shown on the same color scale as the other two correlation coefficient matrices in which the
original values are shown. The original similarity coefficients for each matrix are listed in S2
Table, S3 Table, S4 Table, and used in all analyses. We emphasize that we assessed the consis-
tency of the patterns of correlation between brain regions across the data sets and not necessar-
ily the equivalence of the actual correlation strength between pairs of brain regions across the
data sets.

Fig 2. A convergent pattern of genetically mediated relationships among cortical surface areas. A)
Genetic correlations (rg) of VETSA derived by an AE twin model. B) Genetic correlations (rg) of C5C derived
by genotype-based GCTA-bivariate model. C) Gene expression or transcriptomic similarities of Allen Human
Brain Atlas cohort based on Jaccard coefficient that are scaled to [-1,+1] such that they can be displayed on
the same color scale with the correlation coefficients. Subsequent analyses were performed on the original
similarity coefficients shown in S4 Table. D) Hierarchical clustering of the genetic correlations between
cortical regions averaged over standardized twin rg (A), genotype rg (B), and gene expression similarity (C).

doi:10.1371/journal.pgen.1006143.g002
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To assess the similarity of the estimates of genetic correlations between cortical regions
across the VETSA twin and C5C sample data sets, rather than filter the results at an arbitrary
threshold, we employed linear regression analysis with an errors-in-variables (EIV) model
[24]. The magnitude of the genetic correlation between two traits might be very different from
the overall heritability of those two traits; e.g., if two traits each have low heritability, they
could still have a high genetic correlation by having the same small set of genetic variants influ-
ence each of them. Estimating genetic correlations can be problematic if the genetic variance
component for one of the traits is very low, however, because the estimate of that variance
component will tend to be less reliable, with a large standard error; i.e., any resulting genetic
correlation involving that trait and another is likely to have a large overall error and be less reli-
able, no matter how robust or reliable the estimate of the other trait’s genetic variance. For
example, in the extreme case of the precuneus (cluster 11), its genotype-based heritability was
barely 5% [9]. As a result, the estimates of its genetic correlations with all other regions had
very large errors, rendering the estimates uninformative (see column 11 and row 11 of S3
Table, and row 11 of Fig 2B). We therefore weighted the estimates of the genetic correlations
by their variances in the EIV model. As a comparison, we also computed Pearson’s correlation
coefficient between each pair of correlation or similarity matrices under investigation, effec-
tively ignoring any estimation errors. An overall test of the similarity of the genetic correlations
across the VETSA and C5C data sets was based on the Mantel test as described in the SI
Methods.

The Mantel test results for correlation matrix comparisons are shown in Fig 3 (The actual
correlation values are listed in S2 Table, S3 Table and S4 Table). The extremely high correlation
between the phenotypic and genetic correlations of the VETSA twin cohort was expected (see
also Fig 1C), as the cortical regions defined by genetically based parcellations were derived
from the same cohort. Notably, the genetic patterns in the correlation matrices computed from
the two data sets were also highly consistent. The two sample sets were not only independent,

Fig 3. Significant associations among correlation matrices. Correlation matrices among cortical surface
areas derived from a variety of measures are highly consistent with each other as quantified by the Mantel
test coefficients with 95% confidence intervals. Each pair of bars represents two correlation methods used in
the Mantel test: linear regression with errors-in-both-variables (correlation with EIV) in gray color on the left
versus Pearson’s correlation in light-gray color on the right. Variables were standardized in regression
analysis. *p�0.05, **p�0.01, ***p�0.001, ****p�0.0001. Twin refers to VETSA cohort, and twin-based
method was used to derive genetic correlations. Genotype-based method was used to derive genetic
correlations for ombined-5-cohort. The corresponding matrices are visualized in Figs 1 and 2. See also S1
Fig and S2 Table, S3 Table, and S4 Table.

doi:10.1371/journal.pgen.1006143.g003
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but also, as emphasized, required the use of very different analytical models and methods to
estimate genetic correlations. Even when we did not use the EIV model, the correlation
between the data sets was still statistically significant. The relationships between the two sets of
genetic correlations obtained with each of the data sets are further detailed in Supplemental S1
Fig.

Gene co-expression patterns derived from transcriptomic data
To further investigate the phenotypic and genetic relationships of cortical surface areas, we
compared the inter-regional genetic correlations with the gene co-expression profiles using a
third independent data set: data from the publicly available Allen Human Brain Atlas [17, 18].
We developed a spatial mapping between the neuroanatomical subdivisions of the transcrip-
tome data and the locations focused on in our brain imaging analysis (Fig 4). An aggregated
transcriptome profile was derived for each of the 12 cortical regions we considered in the twin
and genotype-based analyses. We computed inter-regional co-expression similarity profiles
using the Jaccard coefficient [25], which is a unity-based normalized similarity measure. The
Jaccard coefficient similarity matrix is shown in Supplemental S4 Table and the standard scores
in Fig 2C.

As exhibited in Figs 1 and 2, there was generally a concordance between the transcriptome
similarity matrix and the phenotypic and genetic correlation matrices. Indeed, as summarized
by the Mantel test coefficients shown in Fig 3, the gene expression similarity profile was highly
correlated with the phenotypic correlation profiles. These gene expression similarity profiles
were also highly correlated with twin-based genetic correlations of the VETSA data, and signif-
icantly correlated with the genotype-based genetic correlations of the C5C sample data,
whether the relation was obtained using linear regression based on the EIV model or a simple
correlation analysis.

Genetic correlations converge to biologically meaningful patterns
In addition to visually comparing the correlation matrices and rigorously testing the similari-
ties between them with Mantel tests, we further examined how the genetic relationships
between regions cluster those regions. We took an average over the twin genetic correlations of
VETSA (Fig 2A), genotype-based genetic correlations of C5C (Fig 2B), and gene expression
similarity of Allen Human Brain Atlas that were scaled to [-1,+1] (Fig 2C). We then performed
a hierarchical mean linkage clustering on the averaged genetic correlations (converted to dis-
tances) between cortical regions, with the results shown in Fig 2D. The top-level cluster essen-
tially conforms to the pattern of frontal lobe versus other lobes (temporal, parietal and
occipital), with superior temporal (cluster 6) being the only exception. Within each top cluster,
neighboring cortical regions are generally clustered together by their genetic correlations. We
emphasize here that the genetic relations are averaged over independent datasets across differ-
ent study designs with genetic correlations derived using different methodologies.

Region-specific gene expression profiles in each lobe
Fig 5A illustrates the number of genes distinctively expressed in the cortical regions of one lobe
or co-expressed in two or more lobes of the brains. A gene is selected if it is expressed in the
majority of the samples, resulting in a consensus expressed gene list for each lobe. The corre-
sponding genes are listed in Supplemental S5 Table. The gene expression profiles of cortical
regions that mapped onto the same lobe of the brain were combined to evaluate the genetic
components at a gross anatomical level. A majority of the genes, 71.4%, were ubiquitously
expressed in cortical surfaces of all four lobes. Approximately 2.1% of genes (602) were

Multiple Lines of Evidence Confirm a Genetic Cortical Pattern

PLOS Genetics | DOI:10.1371/journal.pgen.1006143 July 26, 2016 7 / 18



expressed in the cortical surfaces of at least one but not all four lobes. Fig 5B contrasts the dis-
tributions of functional annotations of all transcripts included in our analysis versus the tran-
scripts distinctively expressed in the frontal lobe. We found a higher proportion of intergenic
transcripts in the frontal lobe. A gene network analysis for the frontal lobe (excluding inter-
genic transcripts) is shown in Fig 5C. The genes that were used in the analysis are listed in S6
Table. The most significant pathway turned out to be the interferon-gamma-mediated signal-
ing pathway (FDR = 3.2x10-4). Half of the associated genes were from the set of transcripts dis-
tinctively found in the frontal lobe. S7 Table and S8 Table list the complete list of associated
functional pathways (FDR< 0.1) and the genes in the network.

Fig 4. Gene expression data of the Allen Human Brain Atlas were mapped onto the 12 genetically
based cortical regions in the MR space. A) Resulting volume registration between FreeSurfer surface
(fsaverage) and Allen brain MNI coordinates displayed as a point cloud, with a slice of the MRI imaging at the
bottom (colin27). B) After the volume registration, gene expression data points are mapped to FreeSurfer
surface vertices by assigning each surface vertex the gene expression of the closest (Euclidean distance)
Allen brain data point using nearest neighbor interpolation. If two vertices have the same closest Allen brain
data point, they belong to the same patch and the patch id is displayed as color. Thus, the color patches
illustrate the local density of data points. The color patches with similar sizes across the cortex represent an
even distribution of Allen brain data points and their surface correspondences. Colors of the dots in both (A)
and (B) panels represent cortical regions to which they were assigned, corresponding to the color schemes in
Fig 1B.

doi:10.1371/journal.pgen.1006143.g004

Multiple Lines of Evidence Confirm a Genetic Cortical Pattern

PLOS Genetics | DOI:10.1371/journal.pgen.1006143 July 26, 2016 8 / 18



Discussion
Our integrated analyses resulted in three main findings: (1) We observed consistency of a
genetically-based cortical parcellation scheme among our twin sample and C5C sample of
unrelated individuals. The effective number of independent phenotypes from the 12 corti-
cal regions was estimated to be between 11 and 12 for both sample sets, suggesting that the
parcellation did identify phenotypically and genetically distinct cortical subdivisions within
the spatial resolution of our brain images. (2) Genetic correlations of surface area among
cortical regions estimated from twin modeling were highly consistent with those estimated
from genome-wide genetic markers using an independent sample of 2,364 unrelated indi-
viduals. Similarly, the gene co-expression pattern among cortical regions in six postmortem
brains was also highly consistent with genetic correlations among the surface areas of the
cortical regions estimated from twin or genotype-based analysis. (3) We found that the
majority of genes (71.4%) were ubiquitously expressed in the cortex, whereas the minority
of genes showed region-specific expression patterns. The frontal lobe exhibited the highest
number of distinctively expressed genes whose level of expression was not as pronounced
in the other brain regions. These genes included some immune related genes, and a larger
proportion of expressed intergenic transcripts, which we consider in more detail below.

Fig 5. Region-specific gene expression profiles in each lobe. A) The majority of genes were ubiquitously expressed in the cortical
surface areas of all four lobes of the brain. A small percentage of the genes were either distinctively expressed in one lobe or co-
expressed in multiple but not all four lobes of the brain. The frontal lobe exhibits the most distinctively expressed genes. See S5 Table
for the lists of genes and locations. B) The distribution of functional annotations of the transcripts distinctively expressed in the frontal
lobe. “All” indicates the distribution of all transcripts included in our analysis, irrespective of their expression levels and anatomical
locations. There are a higher proportion of intergenic transcripts in the frontal lobe (22% compared to 14%). C) A gene network
analysis for the frontal lobe (excluding intergenic transcripts). The yellow-colored genes belong to the most significantly associated
pathway: interferon-gamma-mediated signaling pathway, related to immunity (FDR = 3.2 x10-4). Half of the genes were originally from
the transcripts distinctively expressed in the frontal lobe. See S7 Table and S8 Table for the complete list of associated pathways.

doi:10.1371/journal.pgen.1006143.g005
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The consistent pattern may conform to a genetically determined
prototypical pattern
How different brain structures are genetically related to each other is still something of a mys-
tery. Here we explored the genetic relationships between cortical brain structures, asking if
there is any evidence that subsets of cortical brain regions are under common or unique genetic
control, and how individual cortical regions are organized genetically. To address this question,
we examined evidence for pleiotropy on a whole genome basis (i.e., evidence for genetic corre-
lations) among various cortical structures in the human brain. The genetic correlation patterns
we found are highly consistent across samples (i.e., genetic correlation matrices between sam-
ples are highly correlated). For the genetic patterning to converge from different sample sets
across different study designs using different analysis methods, several conditions intrinsic to
all the data sets have to be met, including: (1) The boundaries of genetic cortical regions must
be generally aligned; (2) the relative positions of genetic cortical regions must be preserved; (3)
all pairwise genetic correlations between genetic cortical regions are similar; and (4) consistent
genetic relationship estimates exist in genotype polymorphisms, genetic information based on
twin data and gene expression data, regardless of data type, ethnicity, gender and age disparities
across samples, because we have controlled for all these factors. Our first main finding was to
test the requirements (1) and (2), and the second main finding was for the requirements (3)
and (4). It is not trivial to meet all these requirements and derive convergent results from dif-
ferent computational models (see ‘Statistical genetic considerations’ below). We argue that this
robust consistency may be driven by a genetically determined prototypical pattern or canonical
cortical “blueprint” in the human brain [26].

The highly conserved genetic correlation patterns across individuals suggest that, despite
substantial structural and functional variability among individuals, the rudimentary genetic
patterning of the human cortex in terms of these 12 large cortical regions is fundamentally sim-
ilar. Our findings are consistent with the notion of the “protomap” hypothesis, which states
that regional layout of the cortex is established at early stages of development by intrinsic
genetic mechanisms. The cortex is initially patterned by gradients of signaling molecules and
transcription factors within cortical progenitors [27–31]. These genetic gradients exhibit spatial
signatures, such as following the anterior-posterior axis, which confer positional information
for initial formation of cortical areas [32, 33] and the orderly relationship of genetic effects
between regions is required for proper cortical area size. These observations may explain the
highly stable genetic relationships between cortical regions observed in our study.

Genetic patterning recapitulates spatial topography
A notable feature of cortical genetic patterning is that the spatial patterns of gene expression
recapitulate the spatial topography of the cortex [17]. We found strong genetic correlations
among neighboring cortical regions. These proximity relationships could mirror lineage rela-
tionships of cortical neurons generated from proximal parts of the developing cortex under
common influences of genetic gradients. Consistent with previous findings [16, 34], the surface
area similarities between regions within the same lobe were in general higher than those
between lobes, though not without a few exceptions. One such exception was the higher cross-
lobe correlations in all measures between the pars opercularis and subcentral region and supe-
rior temporal region corresponding to the area associated with human language [35]. Another
exception was the anteromedial temporal region. This region’s (cluster 8) expression profile
stood out as being less similar to those of all other regions, which was in slight contrast to its
phenotypic and genetic relationship with other regions. It is known to be involved in memory
as well as more primal emotions such as fear and disgust [36]. This region also had one of the
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highest contributions to heritability by more conserved genomic regions [9]. The occipital cor-
tex’s expression profile was less similar to those of other regions, but this was consistent with
its phenotypic and genetic relations with those regions. Although our observed correlation pat-
tern is not simply contributed by spatial proximity per se, exploring the spatial distributions of
the genes could potentially reveal further insight into how the brain is constructed genetically.

The frontal lobe exhibits the most distinctively expressed genes
We examined the number of genes distinctively expressed in each of the four lobes. A majority
of the genes, 71.4%, were ubiquitously expressed in cortical surfaces of all four lobes. Approxi-
mately 2.1% of, or 602, genes were expressed in the cortical surfaces of at least one but not all
four lobes, suggesting that subtle differences in gene expression profile in terms of spatial loca-
tions in the brain may have significant consequences for cortical functional divergence. The
frontal lobe, a region showing great evolutionary expansion, showed the highest number of dis-
tinctively expressed genes. This finding was consistent with the observed negative genetic cor-
relations between the frontal regions and the regions of the other lobes in our genotype-based
and twin-based analyses (Fig 2A and 2B). The negative correlations were also observed in the
coexpression matrix (Fig 2C). Note that without scaling, the similarity or correlation coeffi-
cients were in the positive scale from 0 to 1, and frontal and posterior regions were still on the
opposite ends in the positive spectrum. This finding suggests the presence of polarized genetic
effects on the cortical surface along the anterior-posterior axis. This lobar-based result is not
contradictory to the previous analysis of the 12 regions that none of the individual frontal sub-
divisions showed the most distinctive genetic profile, because the frontal subdivisions are
highly correlated with one another.

These selectively expressed genes in the frontal lobe are associated with immunity, cell cycle
regulation and transport. The most significantly associated pathways are related to interferon-
gamma, which is critical for immune response. A recent study has found that certain psychiat-
ric disorders have involvement of immune-related gene loci [37]. The genes that appeared to
be expressed to a greater degree in the different brains and contribute to the consistency of the
patterns in genetic correlations between the brain regions are of interest in their own right, and
should be explored for their role in disease susceptibility especially various neuropsychiatric
conditions, if there are known eQTLs that affect their expression, and their association with
traits via association studies, etc.

The frontal lobe also has a larger proportion of the expressed intergenic transcripts com-
pared to the distribution of all the analyzed transcripts, suggesting stronger regulatory involve-
ments. Intergenic transcripts have been suggested to contribute to functional differences
between humans and chimpanzees in an evolutionary comparison study [38].

Statistical genetic considerations
The genotype-based approach implemented in the GCTA program presumably captures the
additive genetic effect contributed by all common single nucleotide polymorphisms (SNPs),
but may not capture all the factors contributing to the heritability of a trait or phenotype (e.g.,
heritable components attributable to rare variants or structural variants in the genome), which
are reflected in twin heritability. Hence, there is usually a difference between the overall herita-
bility of a trait estimated from twin or pedigree data and that estimated from genotype data.
Genetic correlations between two traits obtained by the twin and genotype-based analyses are
likely to exhibit similar differences. Furthermore, although dominance effects at multiple loci
and higher-order epistatic interactions were not explicitly considered, the consistency of the
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correlations across the data sets suggests that the exclusion of dominance and epistatic effects
did not confound our analyses in substantive ways.

Subjects making up the unrelated individuals in the C5C sample were limited to those with
European ancestry to avoid stratification and genetic background effects. The analysis method
for the classic twin design and for computing gene co-expression profiles were not susceptible
to mixture of genetic ancestry; therefore, those analyses included Caucasians, African Ameri-
cans and Hispanics. In addition to ancestry heterogeneity, our samples contained differences
in gender and age. The twin sample only had male twins between 50–59 years of age; the C5C
sample had both genders between 3–90 years of age; and the postmortem brain samples also
had both genders between ages 24–57. We have adjusted age and gender in the analyses. The
observed consistent genetic relationships were still evident and not affected by demographic
heterogeneity.

While our genetic analysis of MRI data focused on genetic correlations on one particular
aspect of cortical morphology (cortical surface area), and thus implicates only those genetic ele-
ments related to cortical surface area, the transcriptome analysis we pursued examined tran-
scriptional variation across the cortex based on all genes. Therefore, although we found
consistent patterns between our genetic and transcriptome analyses at the gross anatomical
level, some level of discrepancy was expected.

Conclusions
We found a consistent pattern of genetically-mediated relationships among cortical brain
regions across different data sets and different analytical techniques. These cortical brain
regions are genetically defined and largely correspond to known functional specialized regions.
Thus, our results suggest that the overall cortical patterning, as reflected in the relationships
among cortical regions, is shaped by genetic factors and, further, that this conserved spatial
pattern may be important to organize functional modules of the cortex. This robust and consis-
tent configuration might originate from a common evolutionary and developmental pattern of
cortical regionalization. Although we know that several transcription factors are key players in
intrinsic genetic mechanisms of cortical regionalization, especially based on animal data, there
is a large knowledge gap regarding our understanding of polygenic contribution by common
genetic polymorphisms to human cortical regions. Our work sheds light on the genetically-
mediated organization of cortical regionalization. Identifying the specific variants underlying
the likely polygenic pleiotropic effects we observed, however, will require further, likely very
large-scale, studies.

Materials and Methods

Ethics statement
UCSD IRB approved this study as part of Project #131068X: "The above-referenced project was
reviewed and approved by one of this institution's Institutional Review Boards in accordance
with the requirements of the Code of Federal Regulations on the Protection of Human Subjects
(45 CFR 46 and 21 CFR 50 and 56), including its relevant Subparts." Each study was approved
by the local Institutional Review Board: South East Norway (TOP and NCNG) and Mid Nor-
way (HUNT) Regional Ethical Committee (HUNT), and UC San Diego (PING and VETSA).

Participants
A combined sample of five sub-study cohorts (C5C) is made of 605 subjects from the Themati-
cally Organized Psychosis (TOP) study, 842 Health Study of Nord-Trøndelag (HUNT)
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subjects, 325 Norwegian Cognitive Neuro-Genetics (NCNG) subjects, 726 Alzheimer’s Disease
Neuroimaging Initiative (ADNI) subjects, and 1198 Pediatric Imaging Neurocognition and
Genetics (PING) subjects. The samples for the twin analysis was part of the Vietnam Era Twin
Study of Aging (VETSA) study [20]. There were 466 participants, of which 99 pairs were dizy-
gotic twins and 134 pairs monozygotic twins. The sample is representative of U.S. middle-aged
men in their demographic and health characteristics.

Each study was approved by the local Institutional Review Board (IRB): South East Norway
(TOP and NCHG) and Mid Norway (HUNT) Regional Ethical Committee (HUNT), and UC
San Diego (PING and VETSA). The current study was approved by the IRB of UC San Diego.

Brain imaging data and phenotypes
Magnetic resonance imaging (MRI) data of the brains were collected for all subjects with vari-
ous scanners. The imaging data were analyzed using FreeSurfer software and the cortical sur-
face was reconstructed to measure surface areas at 160k surface locations for each hemisphere.
To account for global effects, we divided the area measure of each location by the total surface
area in each subject. The surface locations were then parceled into 12 regions and surface areas
of each cortical region computed. The regions were previously defined using a data driven clus-
tering technique that identified parcels of the human cortex maximizing their genetic correla-
tions based on twin modeling [16]. The cortical surface areas were adjusted for age, gender,
age-gender interaction, site effects, imaging device, the study cohort, and diagnosis where
applicable. The phenotypes were also adjusted for the first ten eigenvectors of the genetic rela-
tionship matrix for the C5C.

Genotype data
All subjects from C5C were genotyped with different commercial arrays. Genotypes from each
sub-study were imputed separately with European panels from the 1000 Genome Project. After
quality control and removal of related individuals and individuals of non-European ancestry,
2364 subjects with 2,480,482 genome-wide imputed variants from the C5C remained for subse-
quent analyses.

In this final combined cohort, 52% of the individuals were female; the subjects were aged
47 ± 24 y (range = [3, 90]); and 273, 128, 131, 147, and 66 subjects were diagnosed with mild
cognitive impairment (MCI), Alzheimer’s disease (AD), schizophrenia (SCZ), bipolar disorder
(BIP), and other psychosis (OP), respectively.

Twin-based genetic correlations
The genetic correlations of surface area between cortical regions were derived using the classi-
cal twin modeling for the VETSA samples [16]. A standard bivariate twin AE model was used
to estimate the proportion of phenotypic variance between cortical regions accounted for by
additive genetic effects (A) and the individual-specific environmental effects (E) for each mea-
sure [11]. The structural equation modeling (SEM) application OpenMx was used to calculate
and standardize the genetic covariance matrix yielding the genetic correlation matrix.

Genotype-based genetic correlations
A standard bivariate variance component model [39] similar to the bivariate twin model was
used to calculate genetic correlations of inter-regional cortical surface areas for the C5C. In the
model, the phenotype was expressed as a linear function of the sum of additive genetic effects
and the residual effects. But different from the twin model, the genetic component, in
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particular, the genetic relationship matrix, was estimated using the genotype data. The average
information restricted maximum likelihood (AIREML) method as implemented in GCTA
bivariate analysis [15] was used to carry out the estimates of the genetic correlations.

Gene expression profiles and similarities
Transcriptomic data of six human brains at hundreds of anatomical locations was obtained
from Allen Human Brain Atlas [17, 18]. There were one female and five males with an average
age of 42.5. We first mapped the transcriptome locations to the locations used in the brain
imaging analysis. The Allen brain atlas provided data in Montreal Neurological Institute
(MNI) coordinates, which was used as the target space for our registration. We registered Free-
Surfer space to MNI space by using FreeSurfer’s fsaverage T1 atlas, which was rigidly registered
to an MNI T1 brain atlas (colin27). Fig 4 shows the resulting registration between FreeSurfer
surface (fsaverage), MNI T1 atlas (colin27 displayed as slice) and Allen brain MNI coordinates
displayed as a point cloud. After the registration, gene expression data defined at each point is
mapped to FreeSurfer surface vertices by assigning each surface vertex the gene expression of
the closest (Euclidean distance) Allen brain atlas coordinate using nearest neighbor interpola-
tion. The gene expression profiles of cortical regions were subsequently derived, and finally
aggregated over multiple brain samples. The binary gene expressions (expressed or unex-
pressed) were used and the similarity between gene expression profiles of any two cortical
regions was measured with Jaccard coefficient, which computed the fraction of the number of
genes expressed in both cortical regions over the total number of genes expressed in at least
one of the two regions.

Network analysis for frontal lobe genes were performed using GeneMANIA [40] and visual-
ized in Cytoscape [41]. All frontal genes/transcripts excluding intergenic transcripts were
included, along with additional 20 related genes selected by GeneMANIA. Co-expression, co-
localization, protein-protein interaction, and pathways were all considered,. The functional
annotations of transcripts were updated with the new reference genome database via the Re-
Annotator software [42].

Regression with errors-in-both-variables (EIV)
To account for errors in both twin-based and genotype-based estimates of genetic correlations,
a linear regression with errors-in-both-variables (EIV) model [24, 43], instead of the standard
regression model, was used to study the relationship between the two estimates. A total least
square approach was taken to fit the data. The variance of each data point was determined by
the variance from both variables and the linear model.

Matrix correlation
Mantel test [19, 44] was used to compute correlations between two correlation or similarity
matrices. It is a permutation test. Since the mutual independent assumption between elements
do not hold for similarly matrices, the significant level of correlation measures therefore cannot
be obtained directly from normal probability. We acknowledge however if there exists spatial
auto-correlation, the significant levels estimated by Mantel tests could be potentially inflated
[45]. Both regression with EIV model and Pearson’s correlation model were used in Mantel
test for each pair of matrices. The resulting test coefficient corresponded to either the slope of
regression with both matrices scaled to have the same variance, or the correlation coefficient.

Full details are given in S1 Text.
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Supporting Information
S1 Fig. Linear regression of genetic correlation rg of combined-5-cohort (C5C) based on
GCTA onto genetic correlation of VETSA cohort based on the twin AE model using the
errors-in-both-variables (EIV) model. EIV model took error in measurements into consider-
ation and showed significant correlations between the two genetic correlations. Lettered data-
points indicate pairs of cortical regions by numbers (see Fig 1B). Colors represent standard
errors (SE) of GCTA rg estimates, clipped at 1. The genetic correlations shown in the graph
were original values without standardization. Where an overall correlation between the two
sets of genetic correlations was observed, some pairs of regions exhibited strong correlation (or
anti-correlation) consistently. For instance, the pairs opercularis and subcentral region and the
superior temporal region (clusters 5 & 6) had high rg from both sample sets, and the surface
areas of the two regions were also highly correlated, suggesting that the genetic correlation is
likely underlying the phenotypic correlation, which is also consistent with both regions belong-
ing to the same human-specific subdivision involved in language. The occipital region (cluster
12) was consistently anti-correlated with regions in frontal lobe (clusters 1–5), while correlated
with superior parietal region (cluster 10) and likely with precuneus region (cluster 11, although
with large error in the GCTA estimate), both genetically and phenotypically, across both data-
sets (See also Figs 1 & 2).
(PDF)

S1 Table. Comparison of correlation matrices between cortical region surface areas of C5C
and VETSA cohorts. See also Fig 1A.
(DOCX)

S2 Table. Genetic correlations between cortical regions of VETSA sample set estimated
with twin analysis. See also Figs 1C & 2A.
(DOCX)

S3 Table. Genetic correlations between cortical regions of C5C sample set estimated by
genotype-based GCTA-bivariate. See also Fig 2B.
(DOCX)

S4 Table. Gene expression profile similarities between cortical regions using Allen Human
Brain Human Atlas. See also Fig 2C.
(DOCX)

S5 Table. The majority of genes were expressed in the cortical surface areas of all four lobes
of the brain. A small percentage of the genes were either distinctively expressed in the cortical
surface areas of one lobe or co-expressed in multiple but not all four lobes of the brain, which
are listed below. See also Fig 5. Color code indicates location: exon, intron, intergenic, up/
downstream, unknown.
(DOCX)

S6 Table. Genes used in the network analysis for the frontal lobe, including exonic, intro-
nic, and intronic_ncRNA transcripts, but excluding intergenic transcripts. See also Fig 5C.
(XLSX)

S7 Table. Functional pathways associated with genes distinctively expressed in the frontal
lobe (FDR< 0.1). See Fig 5C and S8 Table for the genes in the network.
(DOCX)
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S8 Table. Genes in the network in Fig 5C associated with functional pathways.
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S1 Text. Supplemental materials and methods and consortium authors.
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